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Cognitive neuroscience involves the simultaneous analysis of behavioral and neu-
rological data. Common practice in cognitive neuroscience, however, is to limit
analyses to the inspection of descriptive measures of association (e.g., correlation
coefficients). This practice, often combined with little more than an implicit theoret-
ical stance, fails to address the relationship between neurological and behavioral
measures explicitly. This article argues that the reduction problem, in essence, is a
measurement problem. As such, it should be solved by using psychometric techniques
and models. We show that two influential philosophical theories on this relationship,
identity theory and supervenience theory, can be easily translated into psychometric
models. Upon such translation, they make explicit hypotheses based on sound theoret-
ical and statistical foundations, which renders them empirically testable. We examine
these models, show how they can elucidate our conceptual framework, and examine
how they may be used to study foundational questions in cognitive neuroscience. We
illustrate these principles by applying them to the relation between personality test
scores, intelligence tests, and neurological measures.

There is nothing more practical than a good theory.
— Lewin (1951)

One of the hallmark neuroscientific findings of the
20th century is the discovery of the retinotopic repre-
sentation of early visual areas (e.g., Hubel & Wiesel,
1968; Tootell, Switkes, Silverman & Hamilton, 1988).
That is, activation patterns in the occipital lobe show
striking structural similarity to visually presented ge-
ometric patterns. Such findings, originally only pos-
sible in animal research, have been replicated in hu-
mans in more indirect form. For instance, Miyawaki
et al. (2008) showed how basic visual stimuli (includ-
ing letters) can be decoded from brain activity with
high accuracy (>90%), based upon weighted linear
combinations of voxel activation patterns. For such
low-level perceptual processes, it seems plausible to

consider the observation of activity patterns in early
visual areas as a measurement of what particular stim-
ulus is presented to a particular subject. However, the
measurement theoretical relationship is not always so
clear. Consider the following example: You are invited
to a job interview for a high-status position. Shortly
after being seated, the interviewer takes out a tape
measure and starts measuring your skull. Upon en-
quiring what is going on, the interviewer tells you he
just “measured your intelligence.” In response to your
protesting that such a procedure does nothing of the
sort, the interviewer shows you a list of high-profile
journal articles that report a moderate but consistent
correlation between brain volume and IQ (e.g., Mc-
Daniel, 2005; Posthuma et al., 2002). You may be-
lieve that such a procedure does not measure intelli-
gence, but this appears to run counter to the view in
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KIEVIT ET AL.

cognitive neuroscience1 that physiological measures
may serve as measures of psychological attributes.
We later return to the empirical formalization of this
question.

What is the essential difference between these two
situations? Both take information about the brain to
predict a certain (psychological) property, and both are
based on statistically significant measures of associ-
ation, but at the same time they seem quite distinct.
It seems thoroughly unclear how to resolve this issue.
This raises two questions: of how cognitive neurosci-
entists actually represent the relationship between the
two classes of measures, and what presentation would
justify the interpretation of neurological measures as
representing psychological attributes.

The general practice in cognitive neuroscience is
to limit statistical analyses to the study of descriptive
measures of association (e.g., correlation coefficients).
In fact, some authors have argued that cognitive neu-
roscience is by its very nature correlational (e.g., Jung
& Haier, 2007, p. 148). However, this would leave
open important questions: What is the precise relation-
ship between these two classes of measurement? Does
one measured property cause the other? Or is it the
other way around? Do the different kinds of data re-
ally represent measurements of the same thing? Many
publications implicitly embrace one of these options,
possibly because there simply is no “value-free” way
in which to describe the relationship between behav-
ioral measurements and neurological measurements—
unless, perhaps, if one is satisfied with the conclusion
that “they both just happened.” Certainly it is desirable
(if not tempting) to attach some theoretical interpreta-
tion to the established empirical relationship between
psychological-behavioral and neurological measures.
However, the mere inspection of correlation coeffi-
cients provides no sound basis for deciding between
different theoretical interpretations.

The suggestive nature of correlations between neu-
rological and behavioral or psychological variables has
thus led the literature to become densely populated
with euphemisms, metaphors, and just-so stories re-
garding their precise relation. Psychological processes
and mental concepts can be “associated with” (Mobbs,
Hagan, Azim, Menon, & Reiss, 2005, p. 16502), “re-
cruit” (Morris & Mason, 2009, p. 59), “located in”
(Hadjikhani, Liu, Dale, Cavanagh, & Tootell, 1998, p.
237), “instantiated in” (R. J. Davidson, 2004, p. 222),
“subserved by” (Luna et al., 1998, p. 40), “related to”

1We refer to the discipline here as cognitive neuroscience, as it
is the broadest and most common name for the concurrent study of
psychological behavior and physiological properties. However, we
do not aim to restrict our perspective to merely cognitive phenomena
such as attention, memory, or intelligence: The issues we raise are
equally of interest for fields such as social neuroscience or affective
neuroscience. Wherever we state cognitive neuroscience, we mean
to encompass such more specific branches.

(McGregor, 2006, p. 304), “generated by” (DeYoung &
Gray, 2009, p. 2), “served by” (Demetriou & Mouyi,
2007, p. 157), “implicated in” (Grossman & Blake,
2002, p. 1167), “correlated with” (Canli et al., 2001, p.
33), or “caused by” (Levine, 1999, p. 352) a dizzying
array of cortical areas, process loops, frequency activa-
tion patterns, activation systems, structural differences,
and neurotransmitter levels. The conceptual elephant
in the room is how such varied measures and concepts
relate to each other, what they are indicators of, what
the causal relationships between them are, and how we
should structure our empirical studies so as to maxi-
mize the theoretical payoff of cognitive neuroscientific
research.

Conceptual problems in reductive psychological
science have not gone unnoticed. Several researchers
have taken on theoretical, statistical, and scientific is-
sues concerning reductionism and reductive psycho-
logical science. For instance, Bennett and Hacker sug-
gested that the vocabulary employed in neuroscientific
studies is conceptually flawed. One of the issues they
raised is the “mereological fallacy,” or “assigning to a
part what can only be assigned to a whole” (Bennett
& Hacker, 2003, p. 68). They identified this fallacy
in statements such as “the frontal lobe engages in ex-
ecutive functioning.” They argued that this practice is
philosophically misguided and reflects a conceptual
problem within reductive neurological science. Ross
and Spurrett (2004) argued that functionalist cognitive
psychology requires a solid metaphysical underpinning
of the conceptual and scientific foundations if it is to
function as an autonomous field of scientific inquiry.
Other researchers (Fodor, 1974; Gold & Stoljar, 1999;
Nagel, 1961) have examined the philosophical founda-
tions of reductionism and explicated the requirements
necessary for reductionist claims. Recent efforts have
examined whether the ontology of psychological cat-
egories is suitable for reductive analysis and argued
that an approach in terms of psychological primitives
may be more appropriate (Barrett, 2009). Criticism of
reductive studies has not been purely philosophical. In
a controversial article, Vul, Harris, Winkielman, and
Pashler (2009) argued that a large number of claims
in social neuroscience studies are overstated and that
overly liberal methodology has resulted in unrealisti-
cally high correlations between physiological and be-
havioral measurements (but see also associated com-
ments to Vul et al., 2009).

These publications have focused largely on what
conclusions are not permissible, methodologies that
should not be used, and philosophical claims that can
not be made. The aim of the current article is to address
the criticisms raised by the aforementioned authors by
providing conceptual and statistical tools that may elu-
cidate the type of claims that we can make in reductive
science and developing the requirements such claims
should satisfy.
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PSYCHOMETRIC MODELING OF REDUCTIVE PSYCHOLOGY

Cognitive neuroscience typically attempts to estab-
lish the relationships between at least two distinct ex-
planatory levels, namely, the neurological and psycho-
logical level (Oppenheim & Putnam, 1958). As such,
it has drawn much attention from philosophers, who
have articulated and analyzed many theoretical posi-
tions regarding the relations between the two levels
of analysis (e.g., Churchland, 1981, 1985; Kim, 1984;
Lewis, 1966; Putnam, 1973). Several philosophers re-
cently developed perspectives on reduction, seeking to
integrate certain developments in, for example, molec-
ular neuroscience (e.g., the “New Wave Reductionism”
promoted by Bickle, 1998). It would seem that if such
positions could be translated into statistical models that
are testable given the data that cognitive neuroscien-
tists commonly have at their disposal, the theories ar-
ticulated in the philosophy of mind could serve as a
means to conceptually organize and guide the analysis
of neurological and behavioral data. That is, if it were
possible to find a statistical model representation of,
say, the basic assumption that the property measured
by means of fMRI recordings actually is the same as the
property measured through a set of cognitive tasks or
questionnaire items (i.e., identity theory; Lewis, 1966),
then both the philosopher of mind and the empirical re-
searcher in cognitive neuroscience would benefit: the
philosopher of mind, because there would exist a means
to empirically test theories that have hitherto been re-
garded as being speculative metaphysics at best, and
the empirical researcher, as this could provide statis-
tical tests of interpretations of the data that go well
beyond the speculative interpretations of correlations
that currently pervade the literature.

How could statistical models be of help to the empir-
ical researcher in cognitive neuroscience? Recall that,
in this area of research, one typically aims to build con-
nections between measures related to behavior, psy-
chological attributes, and processes, on the one hand,
and the (relative) activity and physiological character-
istics of the brain, on the other hand. In psychometrics,
we can represent such diverging classes of measure-
ment in a single measurement model. The central idea
of this article is that by varying the way in which a
theoretical attribute relates to the observations, models
can be built that allow for a more detailed investigation
of the relation between neurological and psychological
measurements than are in use to date. This article pro-
poses that modeling techniques suited to this purpose
need not be developed for this purpose, because they
already exist. These mathematically tractable models
with known statistical properties, developed largely in
the discipline of psychometrics, can map theoretical
positions about the relationship between brain and be-
havioral measurements as developed in the philosophy
of mind in impressive detail. We argue that the sta-
tistical formalization of theoretical positions is both
possible and desirable, and we offer the empirical and

conceptual tools to do so. Perhaps most important, such
formalizations make clear that the reduction problem
is, in essence, not just a substantive or philosophical
problem but a standard measurement problem that can
be attacked by using standard measurement models
of psychometrics. However, such models have been
scarcely applied in cognitive neuroscience. From this
perspective, therefore, it seems as if most empirical
work has, instead of solving the measurement prob-
lem, largely circumvented it.

The structure of this article is as follows. We first
define the two classes of measurement under study.
Subsequently, we examine two important theories from
the philosophy of mind literature that explicitly treat
the relationship between these higher and lower order
properties, namely, identity theory and supervenience
theory. In addition, we introduce two psychometric
models that may be used to represent these theoretical
positions. Finally, we illustrate these ideas by apply-
ing both models to datasets examining the relationship
between a personality dimension and intelligence on
the one hand to physiological properties of the brain
on the other hand.

Two Types of Data

In the models we discuss next, we distinguish be-
tween the two classes of data that feature in most cog-
nitive neuroscientific studies. First, we refer to data that
pertain to psychological attributes or mental processes
as P-indicators. These include psychological measure-
ments, such as “solving puzzle x,” “choosing answer
c,” or “the number of objects retained in working mem-
ory.” Second, we refer to data that pertain to neurolog-
ical processes or characteristics as N-indicators. These
may include data such as electrical measures of corti-
cal activity (EEG), speed of processing measurements,
blood oxygenation level-dependent (BOLD) signals,
as well as physiological indicators such as gray mat-
ter density, brain volume, or neurotransmitter levels.
The psychological indicators are indexed to denote ei-
ther different questions on a test (P1 is one question,
P2 another) or different types of measurement (P1 is
an IQ score, P2 a reaction time test). Neurological in-
dicators are indexed to denote, for example, different
regions of the brain (e.g., N1 is a BOLD measurement
of the posterior parietal region, N2 of the amygdala), or
different types of physiological variables (N1 is gray
matter density, N2 is neural processing speed).

For example, in a cognitive neuroscientific study
of empathy, psychological measurements of empathy
could include P-indicators such as questionnaires, self-
reports, or behavioral assessments. In contrast, neu-
rological measurements would include N-indicators
such as the level of BOLD-activation in certain cor-
tical regions in response to seeing another person suf-
fer (see Decety & Jackson, 2004, for a review of the
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KIEVIT ET AL.

neurological study of empathy). It is clear that these
two classes of data are qualitatively distinct (see also
Barrett, 2009). Therefore, researchers require a con-
ceptual foundation that informs data analytic tech-
niques that can be used to test hypothesized relation-
ships between two such sets of data. Two theories in
the philosophy of mind provide a conceptualization of
the relation between psychological and neurological
properties: identity theory and supervenience theory.
Identity theory states that psychological and neurolog-
ical variables depend on the same underlying attribute,
whereas supervenience theory states that neurological
variables determine the psychological attributes. These
theories are discussed briefly.

Philosophy of Mind

Identity Theory

The thesis of identity theory was proposed in several
forms throughout the latter half of the 20th century. It
has its roots in seminal publications such as those of
Place (1956) and Smart (1959). In its most commonly
accepted interpretation, as described in Lewis (1966),
identity theory holds that psychological processes and
attributes are identical to their neurological realiza-
tions.

The attractiveness of identity theory lies in the rela-
tively nonproblematic assignment of causal powers to
mental events. Because a mental event or state is identi-
cal to a (particular) neural realization at any given time,
it has the same causal powers as the neurological state
that realizes it. This implies that in a cognitive neuro-
scientific study of a particular psychological attribute,
one is essentially measuring the same attribute using
two different measurements. The P- and N-indicators
therefore have a common referent. This conceptualiza-
tion paints a thoroughly realist picture of psychologi-
cal attributes, in which the reality of these attributes is
grounded in their physical realization.

Supervenience

Supervenience provides an alternative way of con-
ceptualizing the relation between psychological and
neurological measurements. Different interpretations
of supervenience have been formulated in relation to
a wide range of philosophical topics (Collier, 1988;
Hare, 1952; Horgan, 1993). Historically, the concept
arose from attempts to ground the properties of higher
level concepts such as beauty, morality, and conscious-
ness in their lower order realizations. The definition of
supervenience is as follows: A property X can be said to
supervene on lower order properties Y if there cannot
be X-differences without Y-differences. Thus, the pres-
ence of Y-differences is a necessary (but insufficient)
condition for the presence of X-differences. This rela-
tion of necessity is a sufficient condition for calling the

relation one of supervenience. Consider, for example,
the attribute of being morally good. Under superve-
nience theory, two people cannot differ in terms of
morality (X) without being different on lower order Y
attributes (e.g., behavioral ones; not stealing, cheating,
donating money to charity, etc). Equivalently, if there
are no differences in the lower order attributes (Y, or
behavioral attributes), then there are necessarily no dif-
ferences in the higher order attribute (X, or morality).
This is the sense in which morality supervenes on its
lower order attributes. Properties such as morality and
beauty are “along for the ride,” so to speak: They super-
vene on lower order properties that do not necessarily
share all the characteristics that relate to the superve-
nient property. The atoms that make up the Mona Lisa
are not beautiful, and neurons are not neurotic: Such
higher order properties supervene on the lower order
properties in a causally asymmetric manner.

The philosophical details of supervenience are still
the subject of theoretical perspectives and debates.
Its most vocal advocate in the realm of psychology
has been Jaegwon Kim. His supervenience perspec-
tive on psychology (Kim, 1982, 1984, 1985) defines
psychological attributes as supervenient on neurolog-
ical realizations. That is, psychological attributes are
completely determined by, or realized in, their neuro-
logical constituents. Supervenience has been the topic
of various recent debates on specific alternative inter-
pretations of the concept, varying in terms of modal
strength and necessity (Horgan, 1993; R. J. Howell,
2009). Although these are of interest in and of them-
selves, a comprehensive discussion would lead us too
far astray from our current aim. For sake of parsimony,
we adopt Kim’s more traditional definition of strong
supervenience.2 Kim defined the supervenient status
of higher and lower level properties A and B, respec-
tively, as follows: “Necessarily, for any x and y, if x
and y share all properties in B, then x and y share all
properties in A—that is, indiscernibility in B entails
indiscernibility in A” (Kim, 1987, p. 315). The rela-
tionship of supervenience is asymmetric, as neurolog-
ical states or structures can differ, whereas the higher
order property remains the same (because lower order
differences are necessary, but not sufficient, for higher
order differences).

This implies that supervenience allows for multiple
realizability (Putnam, 1980); several different combi-
nations of N-realizations may lead to the same (value
of the) psychological attribute. Because of this asym-
metry, authors such as Kim give causal priority to the
lower order realizations: The neurological indicators
are considered to determine the causal properties of the
system completely. Supervenience is consistent with a
many-to-one mapping of the lower to the higher order
properties, but not with an isomorphism (which would

2A similar position can be found in D. Davidson (1980, p. 111).
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PSYCHOMETRIC MODELING OF REDUCTIVE PSYCHOLOGY

hold if all relations between instances of the lower
order terms are preserved in the higher order relations),
and therefore precludes identity.

To illustrate this, consider the following transac-
tion. If John gives Jane $5 (higher order process), then
that means that John has either given Jane a $5 bill,
has handed her the equivalent sum in coins, or has
electronically transferred $5 to Jane’s bank account
(lower order processes). Thus, the entire class of these
lower order processes maps onto the same higher or-
der process. If we know that John gave Jane $5, we
can therefore infer that he performed one of the ac-
tions in the corresponding lower order class. However,
we cannot determine which of these actions he per-
formed (no isomorphism). It is evident that an identity
theory perspective on such a monetary transaction is
questionable: John giving Jane $5 cannot simultane-
ously be identical to writing a cheque and to handing
over a $5 bill. We now show how such restrictions
and theoretical considerations can be translated to and
mapped on psychometric models. To do so, we must
first examine the basic properties of the models that we
consider.

Psychometrics

Psychometrics is concerned with the theoretical
and technical development of measurement procedures
and statistical inference techniques. One of the tech-
niques, developed in tandem with psychometric theory,
is structural equation modeling (SEM). SEM consists
of both a graphical and a (equivalent) linear mathemati-
cal representation of the hypothesized causal directions
and statistical associations between measured and la-
tent variables. Such representations imply a specific
covariance structure, which may be tested given ap-
propriate data. Specifically, one can evaluate whether
the observed covariance matrix is consistent with the
covariance structure associated with the specified lin-
ear relationships. For a thorough introduction to SEM
with latent variables, see Bollen (1989).

In SEM, there are two broad classes of model
specification that we consider in detail, namely, for-
mative and reflective models (Bagozzi, 2007; Bollen
& Lennox, 1991; Edwards & Bagozzi, 2000). Both
classes model relationships between observed vari-
ables and latent variables. Here “observed variables”
refer to the variables as they appear in a data file, and
“latent variables” refer to variables that are not directly
observable, so that their values can only be estimated
indirectly (Bollen, 2002; Borsboom, 2008). Many of
the properties central in psychological science (e.g.,
intelligence, personality, working memory capacity)
cannot be determined with certainty from the data and
are therefore properly conceived of as latent variables.

Formative and reflective models provide two ways
of connecting a theoretical attribute, as targeted by a

measurement procedure, to the observations. We dis-
cuss the conceptual difference between these two mod-
els in relation to the distinction between identity theory
and supervenience theory. We present the models using
standard SEM notation (Jöreskog & Sörbom, 1996).
As mentioned, SEM permits the specification of linear
relations between the observed and latent variables as
implied by theoretical considerations, and the evalu-
ation of the degree to which the observed covariance
structure is consistent with that implied by the theoret-
ical relations. The models can allow for either tentative
confirmation, in the sense that they fit the data, or re-
jection, in the sense that they can be overspecified or
display poor fit. Thus, these models are amenable to
empirical tests.

Reflective Models

The most common measurement model in psychol-
ogy is called the reflective model. Instances of the
model include Item Response Theory models (Em-
bretson & Reise, 2000), such as the models of Rasch
(1960) and Birnbaum (1968), and, most relevant to
the present article, the linear factor model (Jöreskog,
1971; Lawley & Maxwell, 1963; Mellenbergh, 1994).
In reflective models, latent variables are seen as the
underlying cause of variability on the measurable in-
dicators (Bollen, 2002; Bollen & Lennox, 1991; Bors-
boom, Mellenbergh, & van Heerden, 2003; Edwards
& Bagozzi, 2000). In other words, the hypothesized
causal direction runs from the latent attribute to the
measurable indicators. The various measurable indi-
cators are seen as reflecting the underlying attributes.
Perhaps the most common example of a reflectively
measured attribute is intelligence. The conceptualiza-
tion of intelligence posits a factor g that refers to the
common cause of variability on intelligence test ques-
tions or subtests (Glymour, 1998; Jensen, 1998).

A reflective model of g is given in Figure 1. In
the figure, three indicators (e.g., IQ test items or sub-
test scores) are conceptualized as measurements of a
single underlying attribute (this is a simple, nonhier-
archical model of g, chosen for illustrative purposes).
Indicators of a reflectively measured latent variable
should (after appropriate recoding) intercorrelate pos-
itively, capture the range of effects the latent variable
can have, and be acceptably reliable (i.e., be charac-
terized by acceptable levels of measurement error). In
addition, in correctly specified reflective models, latent
variables should be referentially stable. That is to say
that the addition or deletion of an indicator may alter
the accuracy by which the attribute is measured but
not the nature of the attribute (latent variable) itself.
With regard to the measurement of g, Spearman called
this characteristic indifference of the indicators (Spear-
man, as cited in Jensen, 1998). Thus, the indicators are
exchangeable in the sense that an exchange possibly
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KIEVIT ET AL.

Figure 1. A reflective model of g. Note. The latent
attribute g is the underlying cause of the variability
in the measured indicators. X = observed variable;
λ = factor loading; ε = error term.

affects measurement properties such as precision but
not the meaning of the attribute of interest. In a re-
flective model, observables are indicators of a com-
mon theoretical attribute, in the same way that a set
of differently constructed thermometers are indicators
of a common attribute, namely, temperature. Thus, it
is assumed that the indicators measure the same thing.
This implies that the latent variable or attributes ex-
ists independently of the model specification, at least
with respect to the particular items used to measure
it (Borsboom et al., 2003). Of course, positing a re-
flective model does not guarantee the existence of pur-
ported latent variables: Rather, the adoption of such a
model generally carries with it a nontrivial ontological
stance with regard to the latent variable.

Formative Models

Formative models express the relationship between
theoretical attributes and observations in terms of a
regression function in which the theoretical attribute
features as the dependent variable and the observed
variables as predictors. This is compatible with a con-
ceptualization of the theoretical attribute (latent vari-
able) as being in some way causally dependent on its
indicators.

A common example of a formatively measured la-
tent variable is socioeconomic status (SES), where the
SES score for a given person is conceived of as a
weighted sumscore of the measured variables, such
as income and education level (R. D. Howell, Breivik,
& Wilcox, 2007; Knesebeck, Lüschen, Cockerham, &
Siegrist, 2003). Figure 2 depicts a path diagram of the
formative model of SES. The three X indicators each
contribute, with a certain weight, to the sumscore of
the attribute SES. The Xs in this example could be
income, education, or other variables deemed relevant
to the estimation of SES. The structure of the model

is based on the idea that the indicators determine the
latent attribute, rather than the other way around. With
respect to SES, this seems to be a plausible model. For
instance, you do not get a raise because your SES level
goes up; rather, your SES level goes up because you
get a raise.

It is often argued that indicators in formative mod-
els should capture different aspects of the formative at-
tribute and should not be too strongly related (Bollen,
1984; Diamantopoulos & Siguaw, 2006). The latent at-
tribute in such a model is represented as the weighted
sum of different indicators that together predict a rel-
evant phenomenon. An important theoretical charac-
teristic of this model is that the latent attribute is de-
fined by the choice of predictors. Thus, in contrast
to the reflective model, a change of predictors im-
plies a change in the nature of the attribute. In ad-
dition, in many circumstances the theoretical attribute
is referentially unstable because the weights of the con-
nections between the observations and latent variable
are usually constructed to maximize the prediction of
external criteria. That is to say, the value of the la-
tent variable for a given person may change from one
study to the next, if the predicted criterion changes
(Bollen, 2002, 2007; Burt, 1976; R. D. Howell et al.,
2007).

Empirical Testability of Models

A crucial property of formative and reflective mod-
els is that they are testable, that is, they can be
empirically corroborated or refuted, because the mod-
els impose restrictions on the joint probability dis-
tribution of the observations. Therefore, the support

Figure 2. A formative model of socioeconomic status
(SES). Note. The attribute, SES, is determined by the
measured indicators. X = observed variable; ζ = residual
term; η = weighted sumscore; the weights denoted are
by γ .
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PSYCHOMETRIC MODELING OF REDUCTIVE PSYCHOLOGY

Figure 3. Reflective model of g and brain measurements. Note. The latent
attribute g is the underlying cause of variability in both the psychological and
the neurological measurements. P1–P3 denote psychological measurements,
and N1–N3 denote neurological measurements.

for a given specification of the underlying struc-
ture can be assessed by means of standard statis-
tical tests and model-fitting methods. Many fit in-
dices have been developed for the evaluation of the
fit of SEM models (Hu & Bentler, 1999; Schermelleh-
Engel, Moosbrugger, & Müller, 2003). Generally, fit
indices are based on the discrepancy between the
covariance structure implied by the specified model
and the covariance structure, as observed in the
data.

Commonly used fit indices are the chi-square for
goodness-of-fit test, the root mean square error of ap-
proximation (RMSEA), and the comparative fit index
(CFI). See Hu and Bentler (1999) and Schermelleh-
Engel et al. (2003) for discussions of cutoff criteria for
various fit indices for varying sample sizes and model
complexity. A discussion of the details of model se-
lection is beyond the scope of this article. The main
point is that such models can be fitted to empirical
data and that this yields well-developed quantifications
of the adequacy of the model. For detailed consider-
ations of model specification and fitting procedures,
an extensive and active area of psychometric litera-
ture focuses on the optimal manner in which to ex-
amine model fit and model selection (R. D. Howell
et al., 2007; Jarvis, Mackenzie, & Podsakoff, 2003;
Myung & Pitt, 1997; Pitt, Myung, & Zhang, 2002,
Waldorp, Grasman, & Huizenga, 2006), parameter es-
timation (Diamantopoulos & Siguaw, 2006; Myung,
2006), stability over time (Hamaker, Nesselroade, &
Molenaar, 2007; Van Buuren, 1997), and issues such
as interpretational confounding (Bollen, 2007; R. D.
Howell et al., 2007). Given that we have many tools
to determine the (relative) adequacy of our speci-
fied models, we now turn to the more relevant is-
sue of how the theoretical positions discussed earlier
may be mapped onto reflective and formative mod-
els.

Mapping of Psychometrics on Theory of Mind

We first examine identity theory, the theoretical po-
sition that at a given time psychological and neuro-
logical properties of measurements reflect the same at-
tribute. This implies that both P- and N-indicators have
a common underlying cause, namely, the true state of
the latent variable. This is consistent with the reflective
model, because that model views variability of the un-
derlying attribute as the cause of variability in both P-
and N-indicator values.3 Therefore, when measuring
brain activity and psychological behaviors related to
a particular phenomenon such as intelligence, one is
essentially measuring the same thing. Figure 3 shows
how variation in the latent attribute (e.g., a subject’s
level of intelligence, or g) is the common cause of
variation in both P-indicators (e.g., “giving the correct
answer to a certain IQ-test question”) and N-indicators
(e.g., “increased activity in the dorsolateral prefrontal
cortex”). If the reflective model of intelligence is cor-
rect, then the latent variable represents the actual value
of g, which can be estimated in the same manner by
both P- and N-indicators.

Therefore, P- and N-indicators can be said to be on
equal empirical footing in that they are both assumed
to be imperfect reflections of the true state of the un-
derlying attribute. Identity theory is concordant with
a realist perspective of psychological science, in the
sense that it considers psychological attributes to be
the underlying cause of variability of measurable indi-
cators. The reflective model furnishes a psychometric
implementation of identity theory: Both the conceptual
and the psychometric model assume a singular under-
lying cause that can be measured by two methods. The

3Given the exact formulation as a SEM, one should construe this
to mean that variability in the underlying attribute causes variability
in both the P- and the N-indicators.
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KIEVIT ET AL.

expected values of measurements within this model
can be expressed as a function of the value of the latent
attribute and the parameter that expresses the strength
of the relationship between attribute and indicator. As
such, it can be tested in the same way as psychometric
models are usually tested. Thus, the reflective model
can be used to provide an empirical test of the identity
hypothesis.

The conceptual advantage of the reflective model is
that it allows for a substantive interpretation of both
classes of measurement by equating the psychome-
tric status of neurological and psychological indica-
tors. For example, some scientists argue that psycho-
logical concepts or processes are best measured by
psychological measurements, whereas others maintain
that neurological measures are more precise or insight-
ful (e.g., the process or concept of consciousness; cf.
Lamme, 2006). This dissension concerning the mer-
its of neurological and psychological measurements
in measuring a psychological attribute seems coher-
ent only from an identity theoretical perspective. A
debate on the relative merits of two methods of mea-
surement requires that the object of measurement be
the same. This allows one to gauge the relative mea-
surement precision of neurological and psychological
indicators. At the same time, it allows for a compre-
hensible interpretation of both types of psychological
research: A (non-neuroscientific) psychologist may ac-
knowledge that corroborating evidence can be gained
by the neurological approach (the same applies to the
cognitive neuroscientist vis-à-vis psychometric data).
Identity theory and reflective models view reductive
psychological science as an integrated attempt to de-
rive the best measure of the underlying attributes of
interest. Such mutually insightful scientific interaction
is in line with Heuristic Identity Theory (McCauley &
Bechtel, 2001), which argues that simultaneous scien-
tific study of two distinct explanatory levels from an
identity theoretical perspective can be mutually bene-
ficial.

Given its attractive theoretical properties, we con-
jecture that identity theory is implicitly assumed in
most cognitive neuroscientific work. However, the con-
ceptual benefits of this application of identity theory
come at a price. For example, for both types of indica-
tors to have the same underlying cause, the assumption
of unidimensionality must be met. Unidimensionality
has testable consequences such as local independence
(Hambleton, Swaminathan, & Rogers, 1991) and van-
ishing tetrads (Bollen & Ting, 1993).4 If these tetrads
are zero (by reasonable approximation), this is an indi-
cation that a unidimensional model may be appropri-
ate, or at least, that it cannot be rejected. This suggests
that the variability in both psychological and neurolog-

4A tetrad is the difference of the products of the covariances of
four measured indicators.

ical indicators is attributable to a singular underlying
cause. The criterion of unidimensionality is strict and
certainly need not be satisfied by purported behav-
ioral and neurological measures of a given attribute.
Thus, researchers should be clear on whether they be-
lieve that their neurological and psychological mea-
surements are truly measuring the same attribute. To
summarize, identity theory represents a strict theoreti-
cal and statistical position concerning the relationship
between the two classes of measurement. It posits that
the variability found in both the P- and N-indicators
has the same unitary, underlying cause and that the co-
variance between indicators can thus be fully explained
by the underlying cause.

We now consider the integration of neurological and
behavioral data from the perspective of supervenience
theory. This theory is statistically less restrictive, is
conceptually distinct from identity theory, and may
provide a more realistic alternative to the stringent re-
quirements of identity theory. In a supervenience con-
ceptualization of psychological processes, the higher
order attributes are realized in their neurological prop-
erties. This is consistent with a specific implementa-
tion of the formative model, called the MIMIC (Mul-
tiple Indicators, Multiple Causes) model (Jöreskog &
Goldberger, 1975). To illustrate this, a path diagram-
matic representation of the MIMIC model of g is dis-
played in Figure 4. In the MIMIC model, the vari-
ability of the determining indicators is a necessary
but insufficient condition for variability at the level
of the attribute. This is consistent with supervenience
theory.

The essential aspect of this model is that there can-
not be variation at the latent variable level if there is
no variation in the indicators; therefore the theoretical
attribute supervenes on its neurological constituents.
Conversely, if two people have exactly the same lower
order properties, that is, they have the same constella-
tion of relevant neurological activation patterns, they
necessarily have the same value on the attribute of in-
terest. The restrictions and characteristics of the strong
supervenience thesis and the formative model are iden-
tical in this sense. The insufficiency component implies
that two people can have different indicator values but
the same position at the latent attribute level. Therefore
the position on the theoretical attribute is multiply re-
alizable. Accordingly, the mapping of the observations
to the theoretical attribute is many-to-one mapping, but
no isomorphism, between the indicator values and the
attribute value. Moreover, as is generally the case for
supervenient properties (Kim, 1992), in the formative
model any given position on the theoretical attribute
corresponds to a disjunction of lower order properties.
For example, a given level of SES may correspond to
either having a high salary and poor education, having
a low salary and high education, having an average
salary and average education, and so on. Thus, the
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PSYCHOMETRIC MODELING OF REDUCTIVE PSYCHOLOGY

Figure 4. Formative (MIMIC) model of g and
brain measurements. Note. P1–P3 denote psycho-
logical measurements; N1–N3 denote neurological
measurements. Psychological measurements are
used to determine the parameter estimates of each
of the g indicators. Variation in the N-indicators
causally precedes variability in the latent attribute.

formative model is an instantiation of the superve-
nience hypothesis.

A formative approach seems a natural position to
take in considering psychological effects of neurolog-
ical deficits. Consider, for example, Korsakoff’s syn-
drome. This condition is usually caused by alcohol
abuse or malnutrition, which results in neuropatholog-
ical symptoms, such as demyelination, neuronal loss,
and small-scale hemorrhages (Kopelman, 1995). Psy-
chological manifestations of Korsakoff’s syndrome in-
clude impairment in the formation of new memories.
In a reflective perspective on Korsakoff syndrome, the
behavioral and neurological deficiencies would both be
seen as measurement of the presence and severity of the
syndrome in a particular patient. This implies a causal
direction that runs from the latent variable (a person’s
value on a dimension representing the severity of Ko-
rsakoffs syndrome) to the neurological lesions. This
seems counterintuitive. A more plausible conceptual-
ization is provided by the formative, or MIMIC, model.
Under such a conceptualization, a person’s Korsakoff
“score” is determined by a weighted summation of the
various lesions, by concurrently measuring and fitting
a set of psychologically relevant predictors, such as

memory tests. In this case, the lesions are the (partial)
causes of Korsakoffs, not vice versa.

The theoretical status of the latent psychological
attribute under supervenience theory is distinct from
that under identity theory. A researcher who adheres to
supervenience theory will represent the latent psycho-
logical attribute as being a formative attribute, that is, as
being determined by the constellation of neurological
indicators. The relative influence of these neurological
indicators is estimated on the basis of the predictive
ability of the attribute in a network of psychologically
relevant predictors.

The supervenience model, as displayed in Figure 4,
has two components. The neurological indicators de-
termine the latent psychological attribute. The param-
eter estimates, or the relative weights of the influence
of the neurological measurements (Bollen, 2007), are
estimated by predicting a psychologically relevant set
of attributes or behaviors. The reflective component of
a supervenience model is often required to be unidi-
mensional. However, the formative part of the model is
not so constrained: The indicators may even be uncor-
related (Bollen, 1984; Curtis & Jackson, 1962). This
model is therefore less restrictive than a reflective, iden-
tity theoretical model. To summarize: An individual’s
position on a formative latent attribute, under the the-
ory of supervenience, may be estimated by fitting the
model to a set of behaviorally predictive psychological
measurements. The identity of the attribute is deter-
mined by the neurological attributes included in the
model that specifies the strength and direction of the
neurological indicators. These indicators are assumed
to determine variability in the latent attribute, which
in turn determines variability at the psychological
process.

The different empirical planes of the N indica-
tors and the P indicators in a supervenience concep-
tualization, as opposed to identity theory, are impor-
tant to neuroscience. The psychological indicators are
scores derived from measurement instruments that are
used in the model specification. The parameter esti-
mates, which relate variability in the latent attribute
to variability on the N indicators, depend on which
P-indicators are chosen in the model. However, it is
possible that the same set of N-indicators will fit mod-
els with different sets of P-indicators. Thus, the same
N-indicators may realize different latent variables, as
specified by different sets of P-indicators. This is a sig-
nificant difference with the identity model, in which
this is impossible.

This is important because it establishes that, given
supervenience, the identification of attributes, even if
they are neurologically grounded, depends on the psy-
chological, not the neurological, part of the model.
This is consonant with the finding that certain neu-
ral structures are “implicated” in a wide range of
different psychological concepts and processes. For
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KIEVIT ET AL.

example, the dorsolateral prefrontal cortex has been
found to be differentially active in processes as
psychologically diverse as response selection (Had-
land, Rushworth, Passingham, Jahanshahi, & Roth-
well, 2001), pain modulation (Lorenz, Minoshima,
& Casey, 2003), components of working memory
(Ranganath, Johnson, & D’Esposito, 2003), voluntary
willed action (Frith, Friston, Liddle, & Frackowiak,
1991), response inhibition (Ridderinkhof, Wildenberg,
Segalowitz, & Carter, 2004), mastication (Takahashi,
Miyamoto, Terao, & Yokoyama, 2007), schizophrenia
(Weinberger, Berman, & Zec, 1986), and intelligence
(Jung & Haier, 2007). For an equally heterogeneous as-
sessment of the functions of the anterior cingulate, see
Vogt, Finch, and Olson (1992) or Devinsky, Morrell,
and Vogt (1995). This functional heterogeneity should
not be construed as a failure of cognitive neuroscience
but rather as an inherent property of brain function and
organization. The point is that if certain cortical areas
are associated with different cognitive functions, then
it is unlikely that fMRI activity in such an area can be
considered, for example, a “measurement of” working
memory, as the assumption of unidimensionality will
probably not be met.

We cannot think of an a priori reason to prefer either
the identity or the supervenience model. Instead, we
think that appropriateness of either model will depend
on the attribute that is being studied and on theoretical
considerations concerning that attribute. However, we
note that precisely these theoretical considerations may
be of great conceptual assistance to reductive psycho-
logical science, as they force researchers to consider
the status of the attribute they are interested in and
the most appropriate manner to study it. Our argument
here is that such choices are not esoteric statistical con-
siderations: They concern unavoidable assumptions
implicit in any type of reductive research. The goal
of this approach is twofold: Positions from philoso-
phy of mind can be made empirical,5 and empirical
neuroscience is provided with a method to get a grip
on some of the more nebulous metaphors concerning
the relation between psychological and neurological
properties.

Doing so may yield several benefits, most no-
tably the avoidance of ambiguous interpretations that
may otherwise arise. If the issues previously men-
tioned are not addressed explicitly, the questions being
studied and the interpretations of the data may suf-
fer. Consider, for instance, Jung and Haier (2007),
who raised the question, “Where in the brain is
intelligence?” (p. 135). Jung and Haier examined
37 methodologically heterogeneous studies that re-

5The idea that epistemological speculation can gradually be re-
placed by empirical science, sometimes termed naturalism or nat-
uralized epistemology, has a long history. See, for instance, Quine
(1969) for a philosophical motivation.

ported correlations between various measures of in-
telligence and the brain. Their model, called the
Parieto-Frontal Integration Theory model, is built
on the basis of what are, in the words of Norgate
and Richardson, “correlations between those corre-
lations” (2007, p. 162) and describes what happens
when an individual is involved in intelligent behav-
ior (p. 138). Although the effort of combining in-
sights from various studies is commendable, the con-
ceptual ground for interpreting the correlations be-
tween intelligence and brain measures in this review
is at times unclear, and findings are therefore hard to
interpret.

First, the question asked by Jung and Haier im-
plies the possibility of the localization of intelligence.
However, as intelligence is an interindividual construct,
this is akin to the question, “Where in the body is
tallness?”—a confusing question at best. Tallness is a
property of the body; it does not reside in it. Simi-
larly, intelligence is a property of the cognitive system
and does not reside in a particular part of the brain.
Second, despite being based on interindividual differ-
ences, the Parieto-Frontal Integration Theory model is
in essence an intraindividual model of intelligent be-
havior. However, as Borsboom, Mellenbergh, and van
Heerden (2003) and Molenaar (2004) showed, these
two domains are quite distinct: Results at the popula-
tion level are not necessarily informative about the in-
dividuals that make up that population. This discussion
illustrates that analyzing and interpreting relations be-
tween neurological and behavioral measurements can
benefit from a sound conceptual basis. To illustrate how
psychometric models may be able to provide more in-
sight, we examine the application of the two previously
discussed models to two empirical examples, focusing
on neurological measurements with respect to person-
ality characteristics and general intelligence.

Intelligence and Brain Volume

To illustrate the issues we just discussed, we re-
turn to the question we posed in the introduction: Can
a measurement of the volume of a person’s brain be
considered a measurement of their intelligence? One
of the more robust findings in the literature relating
intelligence to physiological characteristics is the re-
lationship between skull (or more recently brain) vol-
ume and estimates of general intelligence. Based on
a meta-analysis, this correlation has been estimated at
.33 (McDaniel, 2005). Given this relatively solid sta-
tistical association, can we consider measurements of
brain volume to be measurements of intelligence, and
therefore to conform to the identity theoretical per-
spective? That is, do measurements of brain properties
and intellectual ability together fit a unidimensional
reflective model?
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PSYCHOMETRIC MODELING OF REDUCTIVE PSYCHOLOGY

Methods

To examine this question empirically, we con-
sider behavioral measures (intelligence tests) and
physiological (brain mass volume) measures. The
sample consisted of physiological and behavioral
data acquired from 80 healthy participants (mean
age 21.1 years, SD = 2.55, 29 male, 51 fe-
male). The measures of intelligence are four do-
main scores of the commonly implemented Wechsler
(2005) Adult Intelligence Scale (WAIS–III). The do-
main score subscales used were Verbal Comprehen-
sion (M = 117.16, SD = 9.78), Perceptual Reason-
ing (M = 112.10, SD = 11.31), Working Memory
(M = 111.32, SD = 13.11), and Processing Speed
(M = 116.38, SD = 14.80). In addition to the be-
havioral measurements, all participants were scanned
to estimate white matter, gray matter density, and cere-
brospinal fluid volume. Details of the scanning pro-
cedure and preprocessing steps are described in the
appendix. To determine model fit, we examined the
chi-square test of model fit, the RMSEA (cutoff value
= 0.05), the CFI (cutoff value = 0.95) the Akaike
Information Criterion (AIC; Akaike, 1974), and the
Bayesian Information Criterion (BIC; Schwarz, 1978).
For both models, the first reflective parameter was
scaled to 1 to identify the reflective parameters. For
discussions on the relative merits of these indicators,
see Hu and Bentler (1999), or Schermelleh-Engel et al.
(2003).

We consider this experimental setup from the per-
spective of the two models that we previously dis-
cussed. In fitting both models we use the same data
but impose distinct constraints consistent with the two
models. In both models we view “intelligence” as an
attribute that can be studied by psychological and phys-
iological measurements, even though it cannot be ob-
served directly. From the perspective of the reflective
model, we consider both methods of measurement (i.e.,
voxel-based morphometry [VBM] and the WAIS) as
measurements of intelligence, in the same way that
an electrical and a mercury thermometer may both
measure temperature. This conceptualization has been
represented previously in Figure 3. For this specific
implementation, we would have four psychological
measures and three neurological measures measuring
the same property (g).

Conversely, one may view the neurological mea-
surements as determining the latent psychological at-
tribute. For instance, we may conjecture that the brain
volume determines the level or degree of intelligence,
in the same way that that we know that physiolog-
ical damage can affect personality. In this case, we
consider the MIMIC model to be appropriate. This is
the model previously represented in Figure 4, in the
MIMIC model of general intelligence and brain char-
acteristics, the neurological indicators determine the
value of the latent attribute (i.e., the g score). This in

Table 1. Parameter Estimates for Reflective and
Formative (MIMIC) Models of Intelligence.

Reflective Model MIMIC Model
Variable Intelligencea Intelligencea

WAIS1 0.273 0.601
WAIS2 0.236 0.714
WAIS3 0.301 0.534
WAIS4 0.246 0.5
Gray matter volume 0.983 0.883
White matter volume 0.967 −0.714
CSF 0.752 0.304

Note. MIMIC = Multiple Indicators, Multiple Causes; WAIS =
Wechsler Adult Intelligence Scale; CFS = Cerebrospinal Fluid.
aStandardized factor loading.

turn can be seen as the underlying cause of the vari-
ability of the scores at the WAIS level.

Model Fit Comparison

We used Mplus (Muthén & Muthén, 1998–2007)
to fit the reflective and the formative (MIMIC) models
for these seven indicators using maximum likelihood
estimation. First, we examined the simple reflective
model, in line with identity theory. The model was
rejected by the chi-square test of model fit, χ2(14, N =
80) = 51.6, p < .01. The other fit indices corroborate
this poor fit (CFI = 0.88, RMSEA = 0.18, AIC =
3706.39, BIC = 3739.74). For this data set therefore,
Identity Theory is rejected, and we cannot consider
measurements of brain volume to be measurements of
intelligence. Next, we considered the MIMIC model, in
line with supervenience theory. This model fits the data
well. The model was not rejected by the chi-square test
of model fit, χ2(11, N = 80) = 11.20, p > .4. Other
fit indices supported the good fit of the model (CFI
= .996, RMSEA = 0.015, AIC = 3659.994, BIC =
3686.196). Table 1 shows the parameter estimates for
both models, which quantify the relative strength of
the relationship between the indicators and the latent
attribute “g.”

For this data set therefore, a reflective model (iden-
tity theory) does not fit the data. The MIMIC (super-
venience) model, on the other hand, fits the data quite
well and explains .25 of the variance in general intelli-
gence, in line with previous analyses, clearly favoring
this model for this data set. However, the distinction
in model fit will not be as clear-cut for all psychologi-
cal constructs. Next, we examine a data set where the
distinction is less pronounced.

Personality and the Brain

Another type of construct traditionally of interest
for scientific psychology is that of personality. One
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of the more famous models is the Big Five model of
personality (McCrae & John, 1992), which describes
variation in personality traits along five dimensions
(Extraversion, Neuroticism, Conscientiousness, Open-
ness, and Agreeableness). Certain aspects of person-
ality have been shown to correlate with differential
brain activity and physiology (DeYoung & Gray, 2009;
Wright et al., 2006). In fact, one of psychology’s most
famous case studies, that is, the case of Phineas Gage,
suggests that brain physiology may be of significance
to researchers of personality (Damasio, Grabowski,
Frank, Galaburda, & Damasio, 1994). We examine the
conceptual and statistical relationship between psy-
chological data on a common personality subscale,
Conscientiousness, on one hand, and a physiological
measurements—in this case, gray matter density—on
the other hand.

Methods

In this study, physiological and behavioral data were
acquired from 110 healthy participants (age M = 21.4,
SD = 2.4, 27 male).6 The participants were tested
on the abbreviated personality questionnaire NEO-PI
(McCrae & Costa, 2004). This personality question-
naire comprises 60 items, with 12 items for every Big
Five personality dimension (i.e., Extraversion, Neu-
roticism, Conscientiousness, Openness, and Agree-
ableness). For the purpose of this illustration we fo-
cus on one subscale, Conscientiousness. In addition,
we obtained of each subject two 3DT1 scans to study
VBM. VBM is a voxel-wise comparison technique that
uses high-resolution structural scans to estimate gray
matter density values at the voxel level (Ashburner &
Friston, 2000, 2001). Eight participants were excluded
due to recording problems or the lack of a second scan,
leaving 102 participants for subsequent analysis. We
provide further preprocessing and scanning details in
the appendix. As with the general intelligence data, we
fit two models: a reflective model in line with identity
theory, and a MIMIC model in line with supervenience
theory.

Model Fit Comparison

We used Mplus (Muthén & Muthén, 1998–2007)
to fit the reflective and the formative (MIMIC) models
using maximum likelihood estimation. Using an iter-
ative procedure that excluded parameters if model fit
improved significantly by their removal, the final mod-
els included four brain regions (Left Supramarginal
Gyrus, Right Middle Frontal Gyrus, Left Cerebellum,

6Eighty of the participants in the personality data set were also
analyzed in the intelligence data set, albeit on different behavioral
and neurological measurements.

Table 2. Standardized Parameter Estimates for Reflective
and Formative (MIMIC) Models of Conscientiousness.

Reflective Formative (MIMIC)
Variable Modela Modela

C1 0.361 0.359
C2 0.231 0.23
C3 0.207 0.208
C4 0.336 0.337
C5 0.736 0.738
C6 0.397 0.398
C7 −0.204 −0.203
C8 0.313 0.315
C9 0.226 0.225
C10 0.802 0.797
C11 0.73 0.731
Left supramarginal gyrus −0.3 −0.303
Right middle frontal gyrus 0.29 0.311
Left cerebellum 0.062 0.124
Right cerebellum −0.001 −0.062

Note. MIMIC = Multiple Indicators, Multiple Causes.
aStandardized factor loading.

Right Cerebellum) and 11 of the original 12 conscien-
tiousness questions.

First, we considered the reflective model, in line
with identity theory. The reflective model was rejected
by the chi-square test, χ2(90, N = 105) = 120.49, p <

.05. The other fit indices corroborated the poorer fit of
the reflective model (RMSEA = 0.06, CFI = .84, AIC
= 2129.21, BIC = 2207.96). Second, we considered
the MIMIC model. This was not rejected by the chi-
square test of model fit, χ2(84, N = 105) = 100.65,
p > .10. The other fit indices suggest reasonable fit
(CFI = 0.91), RMSEA (0.04), AIC (2101.37), and BIC
(2169.62). Table 2 shows the parameter estimates for
both models, which quantify the relative strength of
the relationship between the indicators and the latent
attribute “conscientiousness.”

Because these two models are by their nature not
nested, a chi-square test to compare them directly is not
possible (Vuong & Wang, 1993). However, the forma-
tive (MIMIC) model shows better fit across the board
than the unidimensional reflective model, with all fit
indices outperforming those of the reflective model.
Overall then, this suggests that the formative model
provides a better fit to the data than the reflective model.
The present study thus provides some support for a su-
pervenience interpretation of the relation between neu-
rological and psychological variables with respect to
conscientiousness.

Implications

As we show earlier, it is possible to fit such
models to conventional neuroimaging data. There
are several important aspects of the two illustra-
tions. First, the reflective, identity theoretical model
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was rejected for both data sets. Despite the ade-
quate sample size and neurological variables known
to correlate with the respective constructs, we can-
not consider such measurements, for these data sets,
to be measurements of the psychological constructs
of interest. This points to an interesting conclu-
sion that follows from the identity hypothesis: Re-
searchers who view brain measurements as mea-
surements of a latent psychological attribute (which
may be plausible), must realize that this accords
to brain measurements the same status as psycho-
logical measurements. Consequently, the brain mea-
sures may be rejected for the same reasons that
poorly performing items in a questionnaire are re-
jected. This illustration shows what is required of
neurological measurements if they are to figure as
“measurements of” attributes in the same way that
psychological measurements do. However, although
the reflective model did not fit for the two examples
we examined, this does not imply it will not fit for any
data set.

First, the strength and nature of the relationship be-
tween psychological construct and neurological prop-
erties will vary depending on the construct, as it does
in our two data sets. Given the variability of the psy-
chological constructs that figure in scientific psychol-
ogy, from early visual perception to complex dispo-
sitional constructs, it seems likely that the strength
and nature of the relationship between neurologi-
cal and behavioral measurements will be also differ-
ent for such radically different behavioral phenom-
ena. Second, we think it more likely that more re-
strictive models, such as the reflective model, will
fit for more “basic,” and less variable, psychological
constructs and processes. For instance, whereas per-
sonality dimensions are at least partly culturally de-
termined, other processes such as retinotopic map-
ping of early visual processing (mentioned in the
introduction), depth perception, and arousal may be
easier to identify with unique, unidimensional neuro-
logical signatures. Such lower, more basic, less cultur-
ally dependent constructs, which display less variance
across people, may be good candidates for identity
theoretical models, although at this point this is largely
speculation.

For both data sets, especially the brain volume data,
the MIMIC model fit the data quite well. This implies
that in these data sets, it is sensible to conclude that the
neurological measurements statistically determine the
variability in the psychological construct. Most impor-
tant, the current findings show us that the relationship,
especially for more complex psychological constructs
such as intelligence and personality dimensions, is not
likely to be simple. For this reason above all, we should
be closely examining the nature of this relationship
and try to gain more insight by modeling hypotheses
explicitly.

Summary

The results of our model fitting and speculations
about other constructs bring to light an important as-
pect of the present reformulation of the reduction prob-
lem as a measurement problem: At the outset of any
investigation, we should be impartial with respect to
the status and quality of psychological and neuroscien-
tific assessments as measures. For example, aspects of
personality have been called “biologically based ten-
dencies” (McCrae et al., 2000, p. 173). It remains to be
seen whether certain empirical measurements behave
in a way that allows for such an interpretation. Despite
the popular view of neuroscientific measures as being
“exact” or “hard,” at least for this data set our analysis
suggests that psychological measures may outperform
neuroscientific measures. Insofar as such measures are
interpreted as relevant to psychological attributes or
processes, they should be evaluated on precisely the
same basis as any other measure. This basis is psycho-
metric in character. There is no way out of this issue,
unless perhaps one comes up with an alternative to
psychometrics, that is, a practically workable theory
of measurement that rests on a different basis. To the
best of our knowledge, such a theory does not currently
exist.

The aforementioned empirical illustration serves as
a proof of principle, in that it demonstrates that con-
ceptual positions about the relationship between two
classes of data can be constructed as statistical models
and empirically tested. In this manner conceptual ideas
about the relation between two levels of measurement
can be translated into falsifiable models and allow for
theoretical interpretations of empirical data that can
go beyond the simple observation that two measures
are associated. In the next sections, we discuss cer-
tain practical issues concerning SEM models and the
possibility of more exotic extensions.

Applying SEM in Practice

Although SEM models generally require larger
sample sizes than more conventional analysis methods,
this increase is by no means prohibitive. Sample sizes
for SEM models are, as with other statistical analyses,
related to model complexity. The models we discuss
here are relatively simple, and sample sizes required
are well within the reach of practicing neuroscientists.
For instance, Marsh and Hau (1999) showed that for
models with 6 to 12 indicators per factor (as is the
case for both our data sets), sample sizes of 50 may be
adequate. Bentler (1995) recommended a total sample
size of at least 5 per free parameter, again within the
limits of our empirical illustrations (cf. Schermelleh-
Engel, Moosbrugger, & Müller, 2003, for an discussion
on this topic). Although it is true that more simple or
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KIEVIT ET AL.

conventional data-analytic procedures such as analyses
of variance and correlation tests yield results for very
small sample sizes, over the long run such analyses
may represent pyrrhic victories over issues of inferen-
tial validity and replication.

Luckily, there are signs that the field of neuroimag-
ing has increasingly moved toward sample sizes that
are more than adequate for treatment with SEM. For
instance, a quick inspection of the first eight empiri-
cal articles in a recent issue of the journal Neuroim-
age (Volume 51, Issue 1, the Anatomy and Physiol-
ogy section) that focus on structural anatomy (such as
we examine in our article) reveal sample sizes of 90,
55, 319, 185, 70, 40, 45, and 280 respectively, all of
which would be amenable to SEM approaches given
the aforementioned guidelines. At the same time, it
is certainly true that lower sample sizes are a com-
mon occurrence in neuroimaging, especially in func-
tional neuroimaging studies. However, to deal which
the inherent complexity of the relationship between
the brain and psychological constructs, more complex
models, which require greater sample sizes, will need
to be developed. The move toward larger, more ver-
satile data sets may be part of a broader development
in the field of cognitive neuroscience, taking inspi-
ration from how neighboring fields deal with similar
problems.

In the field of quantitative genetics, issues of repli-
cability, power, and interpretation have led to the real-
ization that larger sample sizes are not a luxury but a ne-
cessity. This realization has lead to large collaborative
projects such as the EAGLE and the GENEQOL con-
sortium.7 Such large-scale collaborative efforts com-
bine the knowledge, resources, and methodology from
various research groups; can lead to increase collab-
oration and understanding; and therefore benefit the
scientific community as a whole. It is such collabo-
rations that would make the implementation of more
insightful models possible and, in our view, would ben-
efit the field as a whole. An additional advantage of the
use of SEM in the context of collaborative projects is
that there exist a statistically and theoretically sound
way to deal with group differences (i.e., measurement
invariance; Meredith, 1993). A similar development
in the fields of cognitive, affective and social neu-
roscience would be much welcomed (the Brainmap
www.brainmap.org, represents a considerable step in
this direction).

To summarize, the sample sizes required to test con-
ceptually guided SEM models are well within the reach
of current empirical practice. To the extent that such
data sets are not yet widely available, larger collabora-
tions are desirable. Such collaborations are especially
important if we want to tackle some of the most elusive

7http://wiki.genepi.org.au/display/EAGLE/EAGLE and http://
ideas.repec.org/p/rsw/rswwps/rswwps47.html

and vexing phenomena: dynamic, reciprocal changes
over time. In the next section, we show how philoso-
phy of mind and extensions of basic SEM models may
help to get a grasp on such phenomena.

Top-Down Influences and Temporal Dynamics

The models that we have discussed represent two
core philosophical positions, which have well-defined
SEM counterparts. So far, we have focused on the most
conventional method of analysis: the analysis of in-
terindividual differences in cross-sectional data. This
method is dominant in contemporary psychological
science. Although this method provided the basis of
our proposed structuring of the relationship between
behavioral and neurological data, other methodologi-
cal approaches are possible. In fact, there are aspects
of psychological and neurological phenomena that may
be better studied by alternative means. In this section,
we discuss some challenging problems for conceptual
and statistical models in cognitive neuroscience. These
concern dynamic, reciprocal changes of behavior, and
brain structure and function through time. We note that
SEM offers various possibilities to address these prob-
lems.

Conventional thought concerning the relationship
between lower and higher order properties tends to
consider (changes in) neurological properties as the
source or cause of observable difference at the psycho-
logical/behavioral level. For instance, evidence shows
that certain drugs influence cognitive abilities (May-
lor & Rabbitt, 1993), that trauma may influence com-
plex psychological traits such as personality (Damasio
et al., 1994), and that in Alzheimer’s patients amyloid
peptide levels (constituents of amyloid plaques) and
cortical activity are affected prior to observable cog-
nitive symptoms (Buckner et al., 2005; Moonis et al.,
2005). These findings all suggest that changes in corti-
cal structure or functioning can, and do, affect psycho-
logical performance and functioning. However, there
is also ample evidence for the reverse causal path. For
instance, Maguire et al. (2000) showed that London
taxi drivers, following intensive training to learn the
streets of London to the mandatory level of compe-
tence, showed structural changes to the hippocampus,
and these changes were greater for taxi drivers who had
served for a longer time. Also, intense juggling practice
has been shown to affect both gray matter density (Dra-
ganski et al., 2004) and white matter integrity (Scholz,
Klein, Behrens, & Johansen-Berg, 2009). These find-
ings suggest that persistent behavior may affect neu-
rological structure and functioning. Finally, processes
may even be reciprocal in nature, that is, simultaneous
influences both from neurophysiological properties to
behavior and vice versa. For instance, take the influ-
ence of hormone levels on psychology and behavior.
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PSYCHOMETRIC MODELING OF REDUCTIVE PSYCHOLOGY

Figure 5. A possible representation of a time series model. Note. Shown are the latent variables of the
brain states, which represent a person’s neurological configuration at different time points. Above, the
traditional psychological latent variable, such as “juggling ability” or “reaction time.” Over time, it is
possible to estimate the relative influences in both directions. Only the essential parameters are given.

Testosterone, when injected, can directly influence
dominant or aggressive behavior and is found to cor-
relate positively with such behaviors (Mazur & Booth,
1998). However, Mazur and Booth illustrated that
causal relationship may also be reversed: Certain psy-
chological behaviors may themselves lead to an in-
crease in testosterone, and elevated testosterone levels
affect behavior.

The aforementioned examples suggest that influ-
ences may run both from cognitive/psychological
processes to neurological changes and vice versa.
Modeling such dynamic interactions over time is a
challenging problem, both conceptually and statisti-
cally. Philosophers have discussed such complex, dy-
namic systems in various terms, such as emergence,
dynamic systems, and top-down causation. Emergence
has a long philosophical tradition, going back to Mill
and Broad in the late 19th and early 20th century
(for an overview, see Kim, 1999). Recently, emer-
gence and dynamic systems have enjoyed renewed in-
terest as possible models for dynamic, neurocognitive
changes through time. For instance, Jost, Bertschinger
and Olbrich (2010) discussed the philosophical con-
struct of emergence, and the description of a neuro-
system as a (nonlinear) dynamical reciprocal system.
Similarly, Walmsley (2010) examined the concept of
emergence, its relevance for complex systems, and pos-
sible manners in which lawlike properties may emerge
at higher (psychological) levels. Craver and Bechtel
(2007), on the other hand, focused on the concept
of downward causation and how this may be recon-
ciled philosophically. They concluded, “When inter-
level causes can be translated into mechanistically me-

diated effects, the posited relationship is intelligible
and should raise no special philosophical objections”
(p. 547). Furthermore, they stated, “There is a dif-
ferent sense in which a cause can be said to be at
the top (or bottom) and a different sense in which
its influence is propagated downward (or upward)”
(p. 548).

Here we attempt to structure the distinction between
such interlevel effects. Certain SEM models offer the
means to study such complex, interactive processes
empirically. The origins of these models can be traced
to the 1930s and 40s (e.g., Bartlett, 1946), but specific
implementations in the behavioral/psychological sci-
ences are relatively new. For instance, Hamaker et al.
(2007) described a time series model in which two
latent variables and their respective influences were
modeled over time. We discuss how such a model may
be used to model the time course of complex phe-
nomena, such as previously discussed. We distinguish
two “types” of situations: those in which psychological
behavior affects, or at least precedes, variation in neu-
rological properties (e.g., juggling), and those in which
changes in neurophysiology affect (or precede), vari-
ation in psychological performance (e.g., Alzheimer’s
disease). In Figure 5, we present a model with two
latent variables that evolve over time. Each latent vari-
able has three observable indicators. The latent variable
at the top represents a psychological construct, such as
“juggling ability” or “cognitive ability”; the latent vari-
able at the bottom represents a neurological state of a
person, such as “neural density in motor cortex area
x” or “level of amyloid peptides.” We limit ourselves
to just two latent variables for convenience; the model
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KIEVIT ET AL.

can be extended to include additional psychological or
neurological latent variables, with varying numbers of
indicators.

If we measure the indicators of two (or more) la-
tent variables in a given person repeatedly over time,
we can relate the indicators to the latent variables, and
we can model the time series of the latent variables.
As previously mentioned, we would like to differenti-
ate between two scenarios: Variability in the psycho-
logical construct precedes neurological variability, and
vice versa. If we were to assess a sample of people over
time, either improving in juggling or deteriorating in
cognitive performance, we could model this process by
means of psychometric models such as the Integrated
State-Trait model, described by Hamaker et al. (2007).
To ease our presentation, we have included in Figure
5 only the most relevant parameters. The model pa-
rameter φP in Figure 5 represents the influence of the
psychological latent variable at a given time point on
the neurological latent variable at the next time point.
This parameter should deviate from zero if changes
in psychological abilities or behavior (e.g., practicing
juggling) affect changes in neurological substrate (e.g.,
gray matter density in a motor cortex region). Con-
versely, the parameter φN reflects the influence of the
neurological latent variable on the psychological la-
tent variable. This parameter should deviate from zero
if neural changes (e.g., amyloid peptide levels) affect
changes at the psychological level (e.g., psychological
performance).

So given appropriate time series measurements, we
can test the hypothesis that the variation at the neuro-
logical precedes variation at the psychological level,
or vice versa. In doing so, it is possible to empirically
distinguish cases where influence should best be rep-
resented as “bottom up” or “top down.” Note that in
this model we purposely estimate the relationship and
not assume it a priori: For this reason, a MIMIC model
is not appropriate. Rather, we want to explore the time
course of possibly reciprocal influences to gain insight
into the nature of the underlying processes. Despite
the complex nature of such dynamic processes, SEM
models allow researchers, at least in principle, to get a
grip on the structure of the development over time and
reciprocal interactions.

Discussion

The scientific future of reductive cognitive neuro-
scientific research rests both on advances in brain scan-
ning technology and on the development of a compre-
hensive conceptual framework to link psychological-
behavioral measures and neurological measures. To do
so, a careful consideration of the status of neurological
indicators in studies that measure both behavioral and
neurological variables is required. We have shown a

road forward in attacking this problem by demonstrat-
ing that at least two theoretical stances on the reduction
problem can be translated into well-understood formal
psychometric models. To our knowledge, this is the
first demonstration of how theoretical positions drawn
from analytic philosophy can be translated to empiri-
cally testable models. Notably, our demonstration did
not involve any rocket science; it merely used standard
statistical models incorporated in widely available soft-
ware packages. In this regard, the suggested models are
ready for use, and there is little that stops the motivated
researcher from utilizing their benefits.

Several of the issues raised by other authors we
discussed in the introduction can be ameliorated, if
not solved, by our proposed framework. First, by ex-
plicitly framing the connection between neurological
and behavioral variables as a measurement theoretical
relationship, the mereological fallacy can be largely
avoided. The models proposed here do not make claims
about certain psychological processes being “in” or
“performed by” a certain brain region any more than
the answers of the questionnaire are the locus of per-
sonality traits. In fact, we would argue that the current
perspective offers a way to discuss brain–behavior re-
lationships in a meaningful manner without running the
risk of making mereological or seemingly neophreno-
logical claims.

Furthermore, the correct application of SEM models
(greatly) diminishes the problem of nonindependence
raised by Vul et al. (2009). The two-step procedure
described in Vul et al. can be largely avoided by prop-
erly implementing formal measurement models. As
the voxels are not treated as a large sets of independent
statistical tests, but specified as part of a measurement
model that implies certain covariance patterns, the mul-
tiple comparison issue is much less of a problem given
the considerable size of data sets within neuroscience.

Finally, our approach can accommodate some of
the ideas put forth by Barrett (2009). She argued that
certain psychological processes may be more appropri-
ately seen as a “mix” (or “recipe”) of several classes or
types of brain activity. That is, the categorical distinc-
tions we make at the psychological level, for example,
between “thinking,” “perceiving,” and “remembering,”
will probably not be found as categorically distinct pro-
cesses or properties of the brain. For that reason, when
studying neurological properties in relation to certain
psychological properties, it may be more natural to
think that different combinations of distributed activ-
ity in certain regions or systems can together be taken
to represent distinct brain processes. According to Bar-
rett, this more naturally accommodates the structure of
the brain than old-fashioned perspectives such as posit-
ing a “perception” region in contrast to a “memory” re-
gion. Within the framework currently proposed, such
hypotheses (that categorically distinct psychological
concepts may be best seen as complex combinations
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PSYCHOMETRIC MODELING OF REDUCTIVE PSYCHOLOGY

of more basic processes) may be tested. This is best
in line with the supervenience/MIMIC model. Given
different psychological predictors (i.e., whether the re-
flective part of the model consists of personality items,
Raven’s matrices, etc.), one would expect to find differ-
ent parameter estimates of the neurological measure-
ments. The different weighting of neurological indica-
tors is conceptually similar to the recipe metaphor pro-
posed in Barrett. This underscores the flexibility of the
current approach of implementing measurement mod-
els to test substantive hypotheses about brain–behavior
relationships.

We hope that this article has served to convince the
reader that the infamous reduction problem is at least
partly a measurement problem. More specifically, one
cannot hope to make true advances in solving the re-
duction problem without solving the associated mea-
surement problems in parallel. This, we think, has
substantial consequences for how we should evalu-
ate reductionist claims, as well as what we can expect
from reductionist research strategies. There are several
reasons to pursue such a strategy.

There is a tendency, both in science and society,
to view neuroscience as an exact area of research—
closely related to physics, chemistry, and biology—
while viewing psychology as a “soft” discipline (cf.
Racine, Bar-Ilan, & Illes, 2005). However, the exact
sciences are not exact because they use machines rather
than questionnaires, but because they have successfully
formalized theories. Such formalization is currently
lacking at the interface of neuroscience and psychol-
ogy. Thus, insofar as neuroscience has moved into the
field of psychology, it has yet to earn the predicate of
being a “hard” science. Escape from this situation can
only be realized by formalizing theories into mathe-
matical models, which are likely to be statistical in na-
ture, and insofar as these models concern measurement
problems, they will likely be psychometric ones. For
models to function properly, there should be no psy-
chometric prejudice as to the quality of the measure-
ments: From a measurement perspective, neurological
measurements do not have a privileged position over
conventional psychological measurements.

To the researcher with expertise in the intricacies
of psychometric modeling, the example illustration in
this article may be viewed as quite optimistic, and such
an evaluation would not be entirely off the mark. For
even though we think it is evident that psychometrics
has much to offer to neuroscience, it should be noted
that psychometric modeling can be quite complicated.
For instance, as discussed before, successful model-
ing generally requires (slightly) larger sample sizes or
extensive time series, attention to possible problems
involving model identification and model equivalence
(e.g., see Raykov & Penev, 1999), goodness-of-fit, and
other general issues common to statistical modeling.

However, we think that such issues, in general, do not
pose greater problems for SEM models than for other
techniques and should not detract from substantively
guided model implementation. There really is no way
around these problems; in particular, these issues will
not be resolved by being ignored and by proceeding as
if one did not have a measurement problem to solve.

The models we have discussed in the present work
are illustrative of how clean and simple identity and su-
pervenience theories really are. As a result, it is likely
that the models that we applied to personality mea-
sures may be too simplistic. This, however, is a benefit
rather than a shortcoming of the psychometric repre-
sentation of reductive theories: A psychometric repre-
sentation makes the hypotheses proposed transparent
and subject to informed criticism, and it does this to a
degree that no verbal description could match. More-
over, rejecting these models brings with it the task of
inventing better ones. And this, we think, is precisely
the road to progress. In addition, it is likely that al-
ternative models will lead to alternative philosophical
views on the relation between psychology and neu-
roscience. We have provided a proof of principle by
fitting two models with a single latent variable mea-
sured at the interindividual level. However, our ap-
proach is certainly not limited to such a design; one
of the great benefits of SEM models is their flexibility.
Most psychological processes involve a complex inter-
play of more than one attribute. For example, complex
cognitive processes such as problem solving almost
surely involve the interaction of separate subsystems
such as working memory, attention, and intelligence.
SEM models can be extended to include multiple latent
variables, thereby testing hypotheses about the interac-
tive, inhibitory, or excitatory activity of several latent
variables of psychological attributes within a measure-
ment model. The theoretical approach discussed here
is especially suited for the implementation of flexible
models that may address a range of questions of sub-
stantive interest to both cognitive neuroscientists and
philosophers.

Finally, there are at least two types of homogeneity
within cognitive neuroscience that are often assumed
rather than tested. For instance, one of the vexing and
largely neglected issues within psychological science
is the distinction between inter- and intraindividual ex-
planation. This means that a result found at the group
level is often taken to apply to the individual, despite
the fact that this may not be true and is rarely tested
(cf. Borsboom et al., 2003; Molenaar, 2004; Molenaar,
Huizenga, & Nesselroade, 2002). This issue holds as
much for cognitive neuroscience as it does for conven-
tional psychological science. As described previously,
the current approach can be extended to explicitly test
the structure of intraindividual activation. For exam-
ple, the time series model by Hamaker et al. (2007)

83

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
V
A
 
U
n
i
v
e
r
s
i
t
e
i
t
s
b
i
b
l
i
o
t
h
e
e
k
 
S
Z
]
 
A
t
:
 
0
7
:
5
6
 
9
 
J
u
n
e
 
2
0
1
1



KIEVIT ET AL.

showed how an intraindividual process can be mod-
eled with repeated measurements of the same latent
variable. This can be done in much the same way
within the current framework by including dynamic
intraindividual measurements such as EEG or fMRI.
In this manner, one can study the extent to which a
latent variable at the interindividual level is represen-
tative for the individuals that make up a population,
by assessing the homogeneity of the latent variable
at both levels. Interindividual variability is commonly
treated as measurement error, but by explicitly testing
the tenability of this assumption, a more fine-grained
understanding of psychological attributes may be pos-
sible. In fact, the extent to which this holds for certain
psychological attributes but not for others is likely to
yield valuable insights. Another largely neglected but
potentially insightful area of cognitive neuroscience
is the question of homogeneity across subpopulations.
Within the current framework, it is relatively easy to
test whether a latent variable representation of, say,
working memory differs across age groups, gender, or
other subpopulations (e.g., see Meredith, 1993). For
example, Henrich, Heine, and Norenzayan (2010) ex-
amined to what extent it is possible to generalize from
the most commonly studied psychological subpopu-
lation, namely, young, White, highly educated people
from industrialized nations, to other cultures and demo-
graphics. They showed that, even for the most “basic”
of cognitive phenomena such as the Mueller–Lyer illu-
sion, such untested generalization is often unjustified.
The assumption of generalization and homogeneity is,
arguably, even more omnipresent within cognitive neu-
roscience than in conventional psychology. We would
venture that the extent to which neuroscientific findings
generalize across populations and cultures is an open
empirical question and that its premature acceptance
may close off a considerable amount of potentially in-
sightful empirical investigations.

This article has served to illustrate both the necessity
and the potential for conceptual and empirical progress
that may be achieved by considering an integrated psy-
chometric perspective on reductive cognitive neuro-
science. We have offered the conceptual and technical
tools to do so, and we hope that our efforts will be
built on by others. The relationship between mind and
body has fascinated generations of philosophers and
scientists, and it deserves closer methodological and
psychometric scrutiny than it has so far enjoyed. If
theories developed in the philosophy of mind are to es-
cape from their current state of splendid metaphysical
isolation, it is essential to translate these positions to
empirical predictions. With recent advances in neuro-
scientific and psychometric techniques and methods,
we finally have the opportunity to empirically address
questions that were once restricted to the realm of spec-
ulative metaphysics. It would be a waste to forgo such
opportunities.
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APPENDIX

Imaging and Preprocessing

Participants were scanned on a 3-T Philips Intera
scanner, and all data were analyzed using FSL (Smith
et al., 2004), Matlab (Mathworks Inc.), and Mplus
(Muthén & Muthén, 1998–2007). A structural MRI
scan of each participant was acquired using a T1-
weighted 3D sequence (Turbo Field Echo, TE 4.6 ms,
TR 9.6 ms, FA 8◦, 182 sagittal slices of 1.2 mm, FOV
2502 mm, reconstruction matrix 2562).

For the study on intelligence we first extracted the
brains from the structural images (Smith, 2002) and
subsequently segmented the white and gray matter and
CSF using FAST4 (Zhang, Brady, & Smith, 2001). The
resulting volume counts on these compartments were
directly used for the analysis.

For the study on personality we performed voxel-
based morphometry carried out with FSL (Smith et al.,
2004). For this study the structural images were brain-
extracted (Smith, 2002). Next, tissue-type segmenta-
tion was carried out using FAST4 (Zhang, Brady, &
Smith, 2001). The so-obtained gray matter partial vol-
umes were then aligned to MNI152 standard space us-
ing the affine registration. The resulting images were
averaged to create a study-specific template, to which
the native gray matter images were then nonlinearly
reregistered with a method that uses a b-spline rep-
resentation of the registration warp field (Andersson,
Jenkinson, & Smith, 2007, Rueckert et al. 1999). The
registered partial volume images were modulated (to
correct for local expansion or contraction) by divid-
ing by the Jacobian of the warp field. The modulated
segmentated images were smoothed with an isotropic
Gaussian kernel with a sigma of 4 mm. This procedure
was applied to the first and second T1 scans separately,
creating to independent data sets. The data set was used
to identify regions of interest that explained variance
in the overall NEO-PI questionnaire (f -test over the
demeaned five factors) using voxelwise permutation-
based nonparametric testing. From this we obtained 12
regions of interest (ROI) that we used to extract values
in these ROIs from the second (independent) dataset.
ROIs were extracted if at least 200 connected voxels
surpassed a threshold of p < .01.
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